Apr 202012
 



info

The formula used in this
calculation is from the famous Wheelers approximations
which is accurate to <1% if the cross section is near
square shaped.

L (uH) =31.6*N^2* r1^2 / 6*r1+ 9*L + 10*(r2-r1)

where…

  • L(uH)= Inductance in microHenries
  • N = Total Number of turns
  • r1 = Radius of the inside of the coil in meters
  • r2 = Radius of the outside of the coil in meters
  • L = Length of the coil in meters
Multilayer air cor inductors

NOTEThis formula applies at ‘low’ frequencies (<3MHz) using
enameled copper wire tightly wound.

Multilayer air coils Please note that the diameter is measured from center of wire trough
center of the coil and to center of the wire on the opposite side.

Inductance (L):
Coil Inner Diameter (d=2*r1):
Coil Length (l):
Wire Gauge: AWG
      
Number of Turns (N): turns
Turns per Layer: turns/layer
Number of Layers: layers
Coil Outer Diameter (D):
Wire Diameter:
Wire Length:
DC Resistance (R): Ω (at 20°C)

image

If it may happen that you find this multilayer aircoil calculator interesting for others, please consider sharing it.
Please rate this article: 1 Star2 Stars3 Stars4 Stars5 Stars (6 votes, average: 3.33 out of 5)
Loading...