Tuesday, September 17th, 2024

# Calculators

This category contains electronics design calculators

## Water heating calculator

This water heating calculator can help you determine both the amount of heat required to raise the temperature of some water (H2O) and the time it will take. It considers the heat capacities of all three states of matter, so it also works if you want to melt the ice or boil water or heat steam. This calculator uses the …

## LED series resistor calculator

In electronics, an LED circuit or LED driver is an electrical circuit used to power a light-emitting diode (LED). The circuit must provide sufficient current to light the LED at the required brightness, but must limit the current to prevent damaging the LED. The voltage drop across an LED is approximately constant over a wide range of operating current; therefore, …

## Supercapacitor-Ultracapacitor discharge characteristics calculator

Super capacitor discharge time calculator. This calculator determines timekeeping operation using a supercapacitor (ultracap) based upon starting and ending capacitor voltages, discharge current, and capacitor size. Formulas used: Bt(seconds) = [C(Vcapmax – Vcapmin)/Imax]  This formula is valid for constant current only. Bt(seconds) = -log(Vcapmin/Vcapmax)(RC) = t  This formula is valid for linear current only (simple resistive load). Edit the input …

## Multilayer air core inductor design calculator

The formula used in this calculation is from the famous Harold A. Wheelers approximations which is accurate to <1% if the cross section is near square shaped. $$L(\mu H)=\frac{31.6*N^2*r1^2}{(6*r1+9*L+10*(r2-r1))}$$ where… Please note that the diameter is measured from center of wire trough center of the coil and to center of the wire on the opposite side. Inductance (L): uHmHH Coil …

## Single layer air core inductor design calculator

Winding the wire in a single layer produces an inductor with minimal parasitic capacitance, and hence gives the highest possible self-resonant frequency (SRF). Striving to obtain a high SRF and low losses is the key to producing coils which have radio-frequency properties bearing some useful resemblance to pure inductance. The calculation is based on Harold A. Wheeler’s 1928 formula for …